MASTER IN "MECHANICS OF MATERIALS AND STRUCTURES"

http://mastermms.udg.edu/

COURSE 2021/2022

SEMINARS OF INVITED PROFESSORS

DR. MARCO PAGGI

Full Professor of Structural Mechanics at IMT School for Advanced Studies Lucca, Italy http://www.imtlucca.it/marco.paggi

Lesson 1 (2 hours)

Introduction to the course. Reliability and durability issues in composite materials and structures. Examples relevant for aerospace applications and photovoltaics. How to model and simulate multifield problems: theory, finite element procedures and algorithmic aspects.

Lesson 2 (2 hours)

Bridging and nonlinear phenomena at a crack tip: the cohesive zone model. The weak form of the problem and the interface finite elements. Applications in statics and dynamics. Further applications to coupled problems (thermo-mechanics and diffusive phenomena at interfaces).

Lesson 3 (2 hours)

Phase field approach to brittle fracture in the continuum: theory and finite element implementation. Formulation for solid shell finite elements. Further generalizations for macro-mechanics of composites (anisotropic phase field; multi-phase field formulations for heterogeneous materials; computational homogenization).

Lesson 4 (2 hours)

Coupling the phase field approach to fracture and the cohesive zone model. Simulation of complex crack patterns in laminates: translaminar vs. interlaminar failure modes.

Lesson 5 (2 hours)

Micro-mechanics of composites exploiting the phase field approach to fracture coupled with the cohesive zone model: reliability of fiber-reinforced composites.

DR. CARLOS G. DÁVILA

Team Lead for the development of structural analysis and computational methods.

NASA Langley Research Center 757-864-9130

Hampton, VA

Session 1: Failure Investigations of Metallic and Composite Structures (2 hours)

- Introduction: NASA Langley Who Are We?
- Failures of Metallic Structures
 - Window to disaster: the de Havilland Comet (1954)
 - Aloha Airlines 737 and Multi-site Damage (1988)
 - Apache Helicopter Blade Retention System (1994)
- Composite Failure Cases
 - X-33 RLV LH2 tank failure (1999)
 - AA Airbus A300 Crash (2001)

Session 2: Good Engineering or Bad Engineering? (2 hours)

- Two Very Different Projects: Douglas DC-3 (1935) Mark 14 Torpedo (1931)
- A Tale of Two Accidents: Challenger (1983) Columbia (2003)
- Two Systematic Errors: Cognitive Bias and Organizational Silence
- Fundamentals of Root Cause Analysis and Fault Tree Analysis
- Learning from Failure

Session 3: Analysis for Composites Design and Certification (2 hours)

- The Building Block Approach
- Issues of Scale
- Strength or Toughness?
- Progressive Damage Analysis
- Skin/stiffener Separation in Postbuckled Structures

Session 4: Cohesive Methods for Structural Analysis (2 hours)

- Boeing 787 Wing Root Cracks
- Analysis of Crack Propagation
- Cohesive laws
- R-curves

• Stability of Crack Propagation

Session 5: Fatigue Analysis with Cohesive Models (2 hours)

- S-N or Paris law?
- Miner's rule
- Goodman Diagram
- CF20: A New Cohesive Fatigue Model
- Effect of R-curves on Fatigue Crack Propagation
- Skin/Stiffener Separation in Fatigue

CALENDAR – TIMETABLE

	Classes Dr. Marco Paggi				
	Classes Dr. Carlos G. Dávila				
	Monday	•	Wednesday	Thursday	Friday
8:00	14 March 2022	15 March 2022	16 March 2021	17 March 2022	18 March 2022
8.00					
9:00					
10:00					
11:00	Lecture 1 - M. Paggi	Lecture 2 - M. Paggi	Lecture 3 - M. Paggi	Lecture 4 - M. Paggi	Lecture 5 - M. Paggi
12:00	On-line	On-line	On-line	On-line	On-line
13:00					
14:00					
15:00	Lecture 1 - C. Dávila	Lecture 2 - C. Dávila	Lecture 3 - C. Dávila	Lecture 4 - C. Dávila	Lecture 5 - C. Dávila
16:00	On-line	On-line	On-line	On-line	On-line
17:00					
18:00					
19:00					
20:00					

ON-LINE CONNECTION

If you are interested to attend them, please, fill the following Google forms:

• Dr. Marco Paggi:

https://forms.gle/Us1hA24wC6CybYcf9

Dr. Carlos G. Dávila:

https://forms.gle/ykxVUd2XFyzLqM5H9

