AMADE day

Testing and simulation of a composite-aluminium wingbox assembly subjected to thermal loading

Josep Costa José Manuel Guerrero García Aravind Sasikumar Jordi Llobet Testing and simulation of a composite-aluminium wingbox assembly subjected to thermal loading

Josep Costa

José Manuel Guerrero

Aravind Sasikumar

Jordi Llobet

INNOHYBOX H2020 Clean Sky 2 Project Ref: 785433)

Universitat de Girona

UdG

AMADE day Girona, 16th July 2021

Universitat de Girona

Contents

- Introduction
- Coupon level
- Subcomponent
- Wingbox results
- Concluding remarks

Partners

Project consortium

o sofitec

Dr. Josep Costa

José Manuel Llamas

AMADE-UdG 40% 34% Sofitec

INNOHYBOX project

Project participants: AMADE

☐ Main reasercher: Dr. Josep Costa

Post Docs

Dr. José Manuel

Dr. Aravind Sasikumar

Dr. Jordi Llobet

☐ Master Students: Marc Martinez, Carlos Samaniego Arguello

AMADE lab team

Background

- □ CFRP laminates increasingly used in the aeronautical industry while metallic parts are also maintained → hybrid assemblies
- Due to their high strength and ease to disassemble, these hybrid assemblies are usually **bolted**

Wing of an aircraft

Background

- □ CFRP laminates increasingly used in the aeronautical industry while metallic parts are also maintained → hybrid assemblies
- Due to their high strength and ease to disassemble, these hybrid assemblies are usually **bolted**
- During aircraft operation, high thermal jumps occur (temperature difference between a landed plane and one flying can reach 140 °C) → high thermal stresses
- □ Hybrid bolted joints → materials of the joint expand or contract differently leading to thermal stresses and alterations of the bolted joint response

Wing of an aircraft

UdG T

Project objective

Project objective

Coupon level

- Many tests were done to characterize and understand hybrid bolted joints:
 - Friction tests
 - C-ELS
 - DCB
 - □ In-plane shear
 - Tension
 - □ Single-lap shear
 - Thermal/Moisture expansion

11

Coupon level

Testing at cryogenic and high temperatures

- Friction between dissimilar joints
- Interlaminar fracture toughness
 - Single-lap shear joint

12

Subcomponent experimental test

- □ Small representative **part of the wingbox**
- □ Instrumented with strain gauges
- Negative and positive thermal test conducted

Compared with numerical model

Subcomponent experimental test

Pictures at end of test (-40 °C)

Subcomponent numerical model

3D solids

Subcomponent numerical model

Subcomponent numerical model

Subcomponent numerical vs experiment

□ Compared at the end of the test (-40 °C)

Good agreement in all the strain gauges in all parts (rib, skin and spar)

Wingbox results

Wingbox assembly

Introduction | Coupon level | Subcomponent | Wingbox results | Concluding remarks

Experimental testing: instrumentation

- □ 64 strain gauges placed at different locations
- □ Type of strain gauge selected according to the part material
- □ 16 thermocouples placed at different wingbox locations to track the global thermal field

INNOHYBOX project

Experimental testing: thermal chamber

Big thermal chamber designed to accommodate wingbox

□ Sandwich panels of 100 mm made of rock wool and steel

2200 mm	
AIR OUT	1000 mm
	21 mm

Experimental testing: thermal chamber

□ Pictures of real testing chamber and wingbox inside

Introduction | Coupon level | Subcomponent | Wingbox results | Concluding remarks

INNOHYBOX project

Experimental testing: thermal chamber

□ Negative and positive thermal test were done

Tests were 8 hours long and uniform temperature was achieved

Wingbox finite element model

- Parts as continuum shells
- □ Bolts as beam + SFM (more than 200)
- Contact with friction
- □ Fully automated using Python
- **1.2** million elements
- □ 7-9 hours of simulation time

Global deformation

Deformed shape with negative thermal test (numerical model)

□ Ribs compressed and pulled the other parts to bend

Single rib

Double rib

Introduction | Coupon level | Subcomponent | Wingbox results | Concluding remarks

Double rib vs single rib hoop stress

INNOHYBOX project

Ribs edge vs center deformation and stress

Ribs mouse hole edge bay comparison

Double rib Edge bay mouse hole

34

Top skin

Concluding remarks

Successfully measured the evolution of the strain in a transient temperature test in a big structure

B We learnt how to correct strain measurements under temperature testing

Successfully measured the evolution of the strain in a transient temperature test in a big structure

□ We learnt how to correct strain measurements under temperature testing

- We developed a new tooling for friction that was used to establish the friction coefficient at different temperatures and for dissimilar materials
- ☐ As a new thing in AMADE, for the first time we were able to measure CTE and moisture expansion for composite laminates and developed a new test procedure to measure the moisture expansion

Successfully measured the evolution of the strain in a transient temperature test in a big structure

□ We learnt how to correct strain measurements under temperature testing

- We developed a new tooling for friction that was used to establish the friction coefficient at different temperatures and for dissimilar materials
- ☐ As a new thing in AMADE, for the first time we were able to measure CTE and moisture expansion for composite laminates and developed a new test procedure to measure the moisture expansion
- □ The proposed simplified model presents reasonable agreement with the experimental data, especially with the metallic parts → Able to simulate large structures (250 bolts or more with contacts)

Successfully measured the evolution of the strain in a transient temperature test in a big structure

We learnt how to correct strain measurements under temperature testing

- We developed a new tooling for friction that was used to establish the friction coefficient at different temperatures and for dissimilar materials
- ☐ As a new thing in AMADE, for the first time we were able to measure CTE and moisture expansion for composite laminates and developed a new test procedure to measure the moisture expansion
- □ The **proposed simplified model** presents reasonable agreement with the experimental data, especially with the metallic parts \rightarrow Able to simulate large structures (250 bolts or more with contacts)
- □ Discrepancies between the numerical and experimental results may be attributed to:
 - □ Thermal residual stresses during the manufacturing process
 - □ Stresses due to the assembly
 - ☐ Associated uncertainty when measuring strains with gauges under temperature changes (±50 microstrains)

Successfully measured the evolution of the strain in a transient temperature test in a big structure

□ We learnt how to correct strain measurements under temperature testing

- We developed a new tooling for friction that was used to establish the friction coefficient at different temperatures and for dissimilar materials
- ☐ As a new thing in AMADE, for the first time we were able to measure CTE and moisture expansion for composite laminates and developed a new test procedure to measure the moisture expansion
- □ The **proposed simplified model** presents reasonable agreement with the experimental data, especially with the metallic parts \rightarrow Able to simulate large structures (250 bolts or more with contacts)
- □ Discrepancies between the numerical and experimental results may be attributed to:
 - □ Thermal residual stresses during the manufacturing process
 - □ Stresses due to the assembly
 - ☐ Associated uncertainty when measuring strains with gauges under temperature changes (±50 microstrains)

□ We have 2 manuscripts under review and 4 more are planned

THANKS FOR YOUR ATTENTION

AMADE day

Testing and simulation of a composite-aluminium wingbox assembly subjected to thermal loading

> Josep Costa José Manuel Guerrero García Aravind Sasikumar Jordi Llobet