experimental characterization and numerical modelling of composites at low cryogenic temperatures for the development of LH2 tanks

J. Renart

Girona, 15th July 2022

The objective:

Development of tools and methods for the experimental characterization and numerical modelling of composites at low cryogenic temperatures for the development of LH2 tanks for the aircraft industry

The team:

A. Turon, J. Costa, C. Sarrado, D. Piedrafita, J. Llobet, J.M. Guerrero, M. Salgado, I. Recio,

J. Renart

The problem

Gt (10° t) CO₂ emissions from aviation (Source: McKinsey & Company 2020)

SAF and radical changes: use of H₂ as fuel

Comparison of climate impact from H2 propulsion and synfuel (Source: McKinsey & Company 2020)

3. Net CO₂ neutral if produced with CO2 captured from the air

4. Measured in CO2 equivalent compared to full climate impact of kerosene-powered aviation

5

Kerosene vs GH₂ vs LH₂

Kerosene 43 MJ/Kg 800 Kg/m³

For the same quantity of energy...

 GH_2 123 MJ/Kg (8.10⁻⁵ to 40 Kg/m³)

> 3000 L H2 gas at 1 bar (293 K)

=

6 L H2 gas at 700 bar (293 K)

□ Use of wing tanks would be too heavy (Brewer 1991, Airbus 2003, Suresh 1998)

LH₂ tanks: Dimensions

Use of wing tanks would be too heavy (Brewer 1991, Airbus 2003, Suresh 1998)
Best options: tanks in the fuselage or new aircraft designs (Source: Airbus 2003)

Tanks made of composite are an attractive option

LH₂ tanks: Materials

Schematics of a tank (Schultheiß, 2007)

Metallic or polymeric thin layers (liners) can be applied to external inner/outer tank surfaces to protect the tank against permeation

Weight reduction

Material configurations (Airbus 2021)

I: all metal (aluminum or steel) II: inner tank metal, outer tank CFRP III: CFRP inner tank + metallic liner + insulation IV: CFRP inner tank + polymeric line + insulation V: CFRP linerless + insulation

Thin plies / hybrid laminates

LH₂ tanks: Materials

Schematics of a tank (Schultheiß, 2007)

Metallic or polymeric thin layers (liners) can be applied to external inner/outer tank surfaces to protect the tank against permeation

Full composite tank (Mc Carville 2018)

- Collaboration between Boeing / NASA
- Hybrid materials: thin plies to avoid permeation and thick plies (manufacturability)

LH₂ tanks: Service life (I)

Main factors that can deteriorate a LH2 tank (Schultheiß, 2007)

11

LH₂ tanks: Service life (I)

Main factors that can deteriorate a LH2 tank (Schultheiß, 2007)

12

Thermal conductivity of the insulation against vacuum pressure (Schultheiß, 2007)

LH₂ tanks: Service life (II)

Other important aspects:

- Inner temperature: ~20 K (H₂ boiling point), low internal pressure in comparison to GH₂ tanks (700 bar)
- Life: LH2 tanks for aircrafts or GH2 tanks for cars (~15 years) in comparison to duration of aerospace LH2 tanks (8 ½ minutes to reach orbit)
- Inactivity times of 12h in aircraft industry, higher permeability requirements.
- Refuelling and maintenance, thermal fatigue

LH₂ tanks: Design

LH2 tank Building Build Approach (McCarville 2018)

14

Objectives

☐ Enhance test facilities for testing at 20K with GHe instead of LH2 (more safe)

Experimental characterization of CFRP laminates at 20K

- Development of measurement and calibration procedures
- Development of test setup and procedures for the characterization under static and thermal fatigue loads
- Understand the mechanical performance under extreme LCT

Numerical simulation of CFRP at 20K

 Formulate thermomechanical constitutive models for interlaminar and translaminar static and thermal cyclic loading

Howas

OVERLEAF: nOVel low-prEssure cRyogenic Liquid hydrogEn storAge For aviation

∎European H2020 project

□IP: Albert Turon

Duration: 36 months (July 2022 – July 2025)

Participants: 10, coordinator: ACITURRI

∎Budget 6M€ (AMADE: 570 k€)

Summary: Development of a game changer low-pressure LH2 tank made of CFRP for the aircraft industry. Definition of materials, characterization of materials, design, manufacturing, integration and demonstration.

AMADE participation: design of the tank and mechanical testing

UdG

CRYFTO: TowaRds the design of saFe liquid hYdrogen tanks for effiCient and green Transport applicatiOns

- ■National project "Generación de conocimiento" (CICYT)
- **DIP:** Albert Turon / Jordi Renart
- Duration: 36 months (September 2022 September 2025)
- Participants: 2 (AMADE, INTA), coordinator: AMADE
- ∎Budget 157 k€
- Summary: understanding the material behaviour and providing reliable tools for the design of liquid hydrogen fuel tanks. Enhance test facilities, development of test methods, material characterization, structural health monitoring (SHM) techniques, simulation of the thermomechanical performance and SHM

http://amade.udg.edu testlab.amade@udg.edu

Universitat de Girona

Part of:

