

Liberté Égalité Fraternité

Overview of the work performed at ONERA on composite materials

F. Laurin

Ce document est la propriété de l'ONERA. Il ne peut être communiqué à des tiers et/ou reproduit sans l'autorisation préalable écrite de l'ONERA, et son contenu ne peut être divulgué. This document and the information contained herin is proprietary information of ONERA and shall not be disclosed or reproduced without the prior authorization of ONERA.

ONERA, the french aerospace lab

I iherté

Égalité Fraternit

A public enterprise

- Under the supervision of the French Ministry MINISTÈRE DES ARMÉES
- Largest wind tunnel fleet in Europe
- €256 million budget in 2021, including
- **€266 million budget** in 2022
- 2,123 employees in 2021 including 1,304 engineers and executives, 350 doctoral students, 23 qualified postgraduates
- 113 scientists holding an accreditation to direct research (french HDR)
- 11 new accreditations to direct research

Scientific knowledge for the future of Aerospace

Scientific knowledge for the future of Aerospace

Studied composite materials at ONERA

Partners: AIRBUS, DASSAULT, STELIA ...

-ow temperature

Composites with ceramic matrix

Unidirectional plies 2D/3D woven plies

SAFRAN SAFRAN SAFRAN

Interesting properties

- Good mechanical properties at high temp.
- Sensitive to fatigue loadings
- Durability in severe environment
- Sic/Sic, C/C, Oxide/Oxide materials

Partners: SAFRAN, CEA, MBDA ...

Content of the presentation

Experiments

Wulti-instrumented tests

- Image correlation, SEM, CT-Scan,
- Acoustic emission, IR thermography

Design of new composite tests

Link between simulation/test

Modelling

 $\underline{\sigma} = \underline{C}$

$$:(\underline{\varepsilon}-\underline{\varepsilon}^{th}-\underline{\varepsilon}^{ve}-\underline{\varepsilon}^{p})$$

$$\underline{\underline{\tilde{S}}} = \underline{\underline{S}}^{0} + \sum_{i} \Delta \underline{\underline{\tilde{S}}}(d_{i}^{\pm}) + \Delta \underline{\underline{\tilde{S}}}(\overline{\rho}, \overline{\mu})$$
$$f_{1}^{+} = \eta_{1} \frac{\varepsilon_{11}}{\overline{\tilde{X}}_{\alpha}(\delta_{\alpha}, \delta_{\alpha})} = 1$$

Development of advanced models

- Damage and failure models
- Fatigue lifetime predictions
- Impact simulations

Search Multi-physical simulation

• Fire and lightning strike issues

Design method

-2.00

- Lay-up optimisation with constraints
- Topological optimisation
- Coupled shape and orientation optim.

Innovative composite structures

• H2 tank, fractal structures

3 main topics addressed by the ONERA's composite team

Study of the damage mechanisms

Proposed methodology

- Optical analysis on one polished edge during loading (open cracks)
- Assembling many pictures (>100) to obtain high resolution images on a large domain
- Digital image correlation between initial and cracks images (DeepFlow software)
- Labelling each crack (orientation, length, ...)

- Applied on classical Carbon/Epoxy materials
 [Nicol 22], [Patti 22]
- Applied to Carbon/thermoplastic in this study

 [Laurin22]

Study of the damage mechanisms

Proposed methodology

- Optical analysis on one polished edge during loading (open cracks)
- Assembling many pictures (>100) to obtain high resolution images on a large domain
- Digital image correlation between initial and cracks images (DeepFlow software)
- Labelling each crack (orientation, length, ...)

- Applied on classical Carbon/Epoxy materials

 [Nicol 22], [Patti 22]
- Applied to Carbon/thermoplastic in this study

 [Laurin22]

Study of the damage mechanisms

Proposed methodology

- Optical analysis on one polished edge during loading (open cracks)
- Assembling many pictures (>100) to obtain high resolution images on a large domain
- Digital image correlation between initial and cracks images (DeepFlow software)
- Labelling each crack (orientation, length, ...)

- Applied on classical Carbon/Epoxy materials
 [Nicol 22], [Patti 22]
- Applied to Carbon/thermoplastic in this study

 [Laurin22]

Study of the damage mechanisms

Proposed methodology

- Optical analysis on one polished edge during loading (open cracks)
- Assembling many pictures (>100) to obtain high resolution images on a large domain
- Digital image correlation between initial and cracks images (DeepFlow software)
- Labelling each crack (orientation, length, ...)

- Applied on classical Carbon/Epoxy materials
 [Nicol 22], [Patti 22]
- Applied to Carbon/thermoplastic in this study

 [Laurin22]

Methodology to detect initial out-of-plane waviness

FRANÇAISE Liberté Égalité Fraternité

THE FRENCH AEROSPACE LAB

Methodology to detect initial out-of-plane waviness

Validation on CT-Scan

[Fougerouse 21]

Methodology to detect initial out-of-plane waviness

Validation on microcuts

[Fougerouse 21]

Time (ms)

High-speed infrared camera (TELOPS) High-speed optical cameras x2 (FASTCAM)

Time (ms)

Content of the presentation

Multi-instrumented tests

- Image correlation, SEM, CT-Scan,
- Acoustic emission, IR thermography

Design of new composite tests

Link between simulation/test

Modelling

 $\underline{\sigma} = \widetilde{C}$:

$$(\underline{\varepsilon} - \underline{\varepsilon}^{th} - \underline{\varepsilon}^{ve} - \underline{\varepsilon}^{p})$$

$$\underline{\underline{\tilde{S}}} = \underline{\underline{S}}^{0} + \sum_{i} \Delta \underline{\underline{\tilde{S}}}(d_{i}^{\pm}) + \Delta \underline{\underline{\tilde{S}}}(\overline{\rho}, \overline{\mu})$$
$$f_{1}^{+} = \eta_{1} \frac{\varepsilon_{11}}{\overline{\tilde{X}}_{\sigma}(\delta_{2}, \delta_{3})} = 1$$

Development of advanced models

- Damage and failure models
- Fatigue lifetime predictions
- Impact simulations
- Multi-physical simulation
- Fire and lightning strike issues

Design method

-1.00

-2.00

- Lay-up optimisation with constraints
- Topological optimisation
- Coupled shape and orientation optim.
- Innovative composite structures
- H2 tank, fractal structures

3 main topics addressed by the ONERA's composite team

Simulation at microscale for comprehension purposes

Damage FE simulations

- Extraction of the real microstructure from pictures [Benezech 19, Przybyla 21]
- Mesh fibres and matrix around (~10 millions degrees of freedom)
- Fibre are linear elastic and phase-field damage approach for matrix
- Massive decomposition domain method associated to simulation
- Comprehension of the damage pattern in thermoplastic matrix composite

Optical micrography

Fibres detection

Phase field simulation (10Mdof-40 domains)

Computational strategy for large composite structures

Proposed methodology

Adaptive computational strategy

- Shell elements for the structure (hot-spot detection)
- Solid element only in critical areas + NL behaviour
- Evolution of the critical area due to propagation of damage events → Remeshing + field transfer

Numerical tools

- **Center Semeshing + field transfer**
- **III ABAQUS** or **Equilibrium** + NL behaviour

Content of the presentation

Multi-instrumented tests

- Image correlation, SEM, CT-Scan,
- Acoustic emission, IR thermography

Design of new composite tests

Link between simulation/test

Modelling

$$\underline{\sigma} = \underbrace{\widetilde{C}}_{\underline{e}} : (\underline{\varepsilon} - \underline{\varepsilon}^{th} - \underline{\varepsilon}^{ve} - \underline{\varepsilon}^{p})$$

$$\underline{\widetilde{S}} = \underline{\underline{S}}^{0} + \sum_{i} \Delta \underline{\widetilde{S}}(d_{i}^{\pm}) + \Delta \underline{\widetilde{S}}(\overline{\rho}, \overline{\mu})$$
$$f_{1}^{+} = \eta_{1} \frac{\varepsilon_{11}}{\widetilde{X}_{\alpha}(\delta_{\alpha}, \delta_{3})} = 1$$

Development of advanced model

- Damage and failure model
- Fatigue lifetime prediction
- Impact simulation

Multi-physical simulation

• Fire and lightning strike issues

Design method

-2.00

Å.

- Lay-up optimisation with constraints
- Topological optimisation
- Coupled shape and orientation optim.
- Innovative composite structures
- H2 tank, fractal structures

3 main topics addressed by the ONERA's composite team

RANCAISE

THE FRENCH AEROSPACE LAB

Topology optimization for anisotropic materials

Anisotropy as a design variable

- SIMP / level-set methods for shape
- Invariant-based parameterization : 2D orthotropic • materials or 3D transversely isotropic materials
- 3D printed cellular materials and structures

Design criteria

- Compliance minimization
- Mass minimization with stress constraints

Concurrent density and anisotropy optimization (2D)

[Vertonghen 22] 3D printed multi-material cellular lattice structures Transversely isotropic material (3D)

THEODERTH

Simultaneous optimization of shape and composite layups

- Level 1 combines optimization of macroscopic properties and shape Stiffener layout optimized using a geometric projection method
- Level 2. Double/Double composite laminates or quasi-trivial laminates

Design criteria

Interstage skirt Ariane 6

ONERA

THE FRENCH AEROSPACE LAB

RÉPUBLIQUE

- Compliance minimization
- Constraints on mass, buckling, strength and displacements

cnes

Stiffened structure or corrugated sandwich? 30% mass reduction wrt reference metallic design

Conclusions

Tests at low levels of pyramid

Test on coupons

- Multi-instrumentation
- Fine comprehension

Test on structures

- Plain coupons
- Open-hole plates
- L-angle specimens

RÉPUBLIQUE FRANÇAISE Lăterit Soutier de la construction de la construc

Liberté Égalité Fraternité

ONERA

THE FRENCH AEROSPACE LAB

www.onera.fr