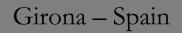
Universitat de Girona



A METHODOLOGY FOR THE EXPERIMENTAL CHARACTERIZATION OF ENERGY RELEASE RATE-CONTROLLED CREEP CRACK GROWTH UNDER MODE I LOADING

Edwin Meulman

Advisors: Dr. Jordi Renart Canalias Dr. Laura Carreras Blasco Dr. Javier Zurbitu Gonzalez

AMADE day winter 2023

Contents

I. Introduction

II. Energy release rate-controlled creep crack growth test

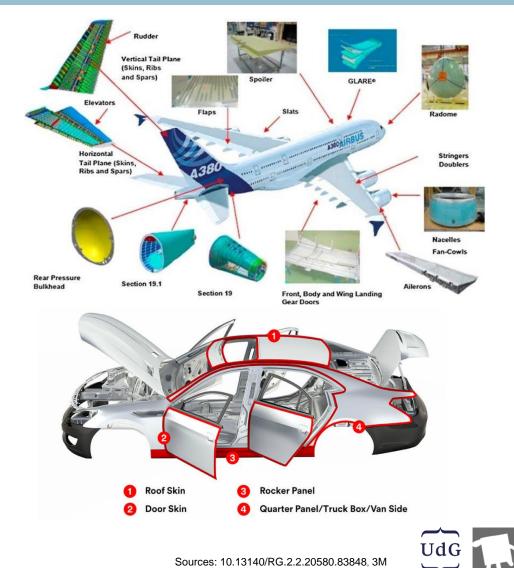
III. Tapered-DCB constant load test

IV. Conclusions

I – Introduction

I – Adhesively Bonded Joints

Adhesively bonded joints


Advantages:

- Potential **lighter** structures
- Easier to bond **dissimilar** materials
- Less stress concentrations

Disadvantages:

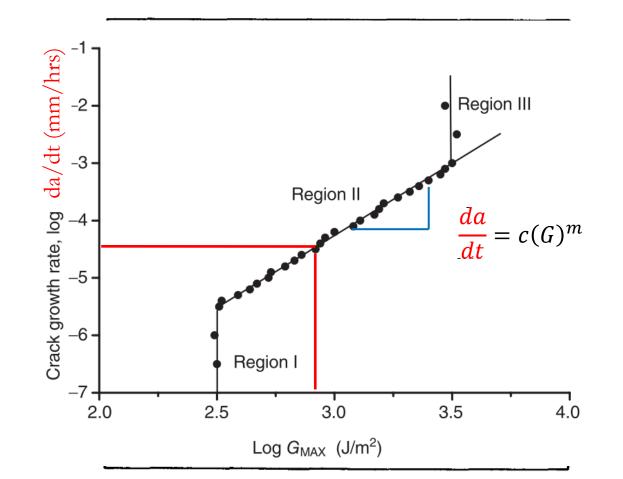
- Adhesive mechanical properties characterization
- Long term adhesive properties **uncertainty**
- Lack of test methods for **durability testing** of adhesives

Use of bonded joints in aeronautic and automotive industries

I - Bonded Joints Durability

Durability testing of bonded joints

Fatigue testing - Paris law


Temperature, humidity and **time** affect the mechanical properties of an adhesively bonded joint

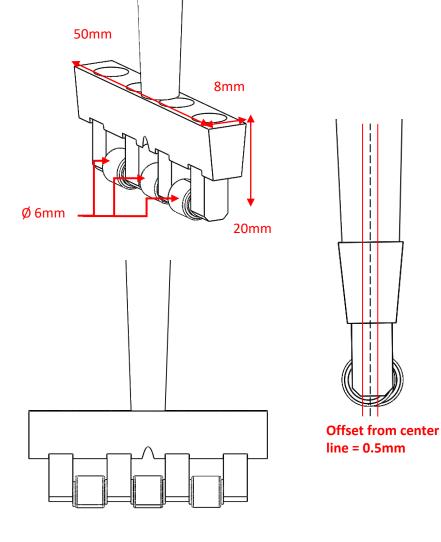
What:

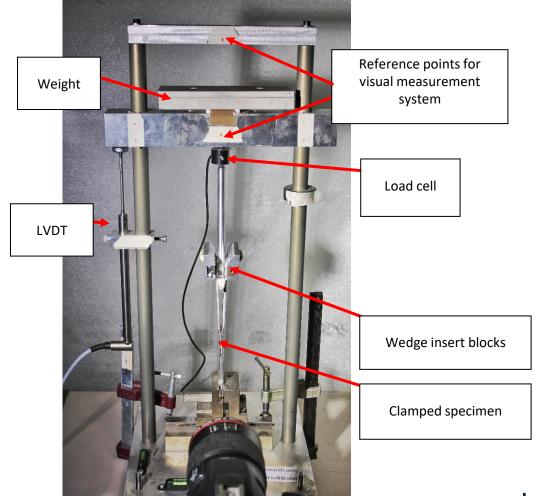
Be able to **predict crack growth rates** in an adhesively bonded joint at **subcritical loads**

Applying a constant subcritical load that provides a **constant energy release rate (G)** at the crack tip and measure the **crack growth over time**

Sources: Cognard et. al., Use of the wedge test to estimate the lifetime of an adhesive joint in an aggressive environment (1986), Broughton et. al., Adhesives in Marine Engineering (2012)

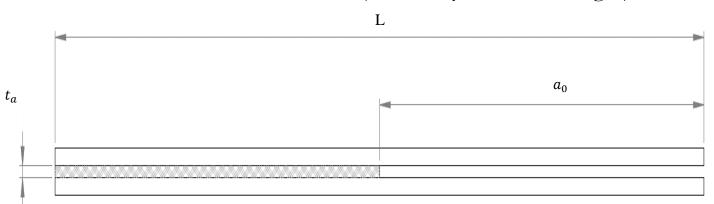
27th January 2023


II – Energy release rate-controlled creep crack growth test


A METHODOLOGY FOR THE EXPERIMENTAL CHARACTERIZATION OF ENERGY RELEASE RATE-CONTROLLED CREEP CRACK GROWTH UNDER MODE I LOADING

II - Design of a roller wedge

Roller Wedge Driven test (RWD)



DCB-like specimens

Adherends: Alu 7075-T6 Adhesive: Araldite 2021-1 (methacrylate-based, rigid)

L x W x H = 200 x 25 x 3 mm $t_a = 0.4 - 0.7$ mm $a_0 = 100$ mm Pre-crack = 10-15 mm

Tested specimens

Specimen	Weight applied	Measurement method
	(N)	
RWD-C_01	31	Visual+LVDT
RWD-C_02	48	Visual+LVDT
RWD-C_03	57	Visual
RWD-C_04	70	Visual+LVDT
RWD-C_05	80	Visual

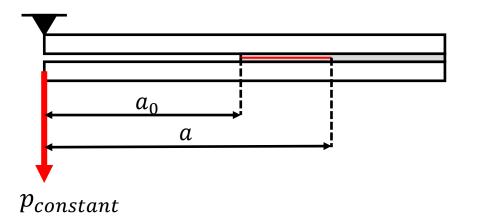
Specimens 3 and 5 chronologically tested first, at that time no proper LVDT available

II - Results

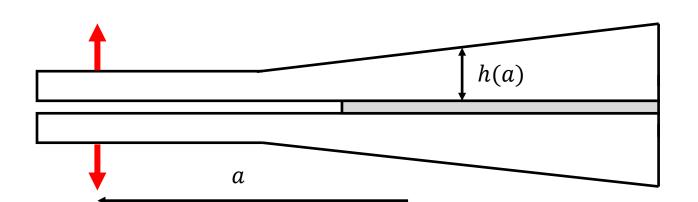
Work in progress of publication but not published yet at moment of presenting

II - Results

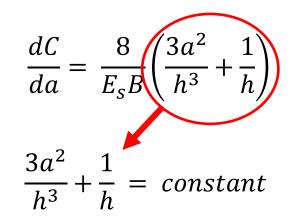
Work in progress of publication but not published yet at moment of presenting



III – Tapered-DCD constant load test


Why a Tapered-DCB and not a DCB?

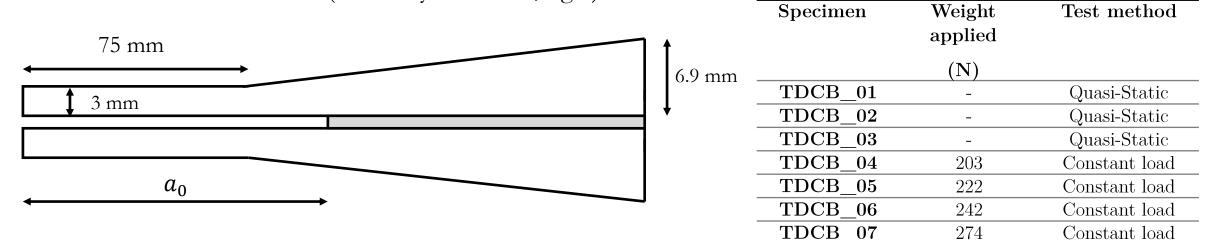
- To have a **demonstrator** to check if the **energy** release rate (G) is the controlling parameter
- To obtain a **constant crack growth rate** by applying a **constant load**
- Appling a **constant load** to a DCB specimen will result in an **increasing energy release rate** at the crack tip when the crack length is increasing during the test
- Therefore, the crack growth rate increases during the test until G_{Ic} is reached, followed by failure of the specimen



Defining the geometry of the TDCB specimen

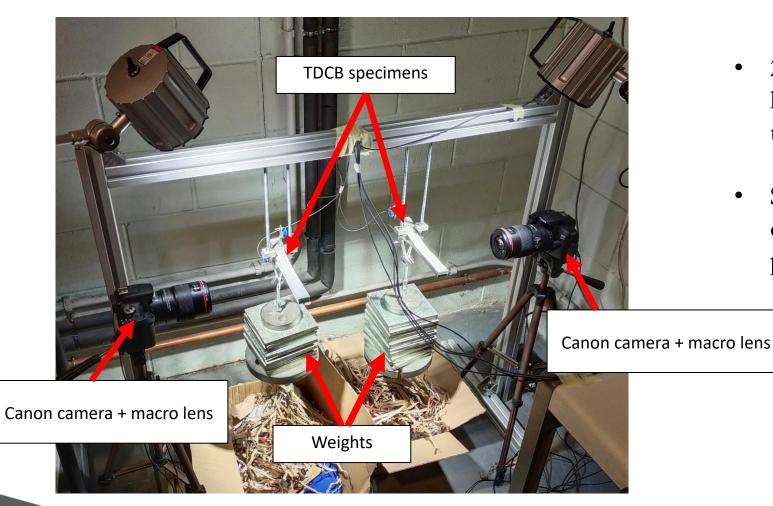
Compliance: $C = \frac{\delta}{P}$

$$ECM: \ G_{IC} = \frac{P^2}{2B} \cdot \frac{dC}{da}$$


Sources: ISO 25217 Adhesives – determination of the mode 1 adhesive fracture energy of structural joints using double cantilever beam and tapered double cantilever beam specimens, B.R.K. Blackman et al. Engineering Fracture Mechanics 70 (2003) 233-248

Tapered-DCB specimens

Tested specimens


Adherends: Alu 7075-T6 Adhesive: Araldite 2021-1 (methacrylate-based, rigid)

L x W = 200 x 25 mm t_a = 0.6 - 0.9 mm a_0 = 100 mm Pre-crack = 10-15 mm

Constant load TDCB test setup

27th January 2023

- 2 Canon cameras are connected to a laptop to take automatic photos with time intervals
- Specimens are marked on the side so crack length can be measured during post-processing of the photos

III - Results

Work in progress of publication but not published yet at moment of presenting

IV – Conclusions

IV - Conclusions

- The RWD test method can apply a constant energy release rate to the crack tip of a DCB-like specimen.
- With the RWD test method it is possible to obtain creep crack growth rate curves.
- The TDCB constant load test has produced similar results as the RWD test method, for these two specific types of specimens the energy release rate, G, seems to be the controlling parameter for creep crack growth.

Thank you for your attention!

http://amade.udg.edu – testlab.amade@udg.edu edwin.meulman@udg.edu

