Universitat de Girona

Kinetic analysis of epoxy-based composite curing

Jose Antonio González Ruiz^a, <u>Jordi Farjas^b</u>, Daniel Sánchez-Rodríguez^b, Norbert Blanco^a, Josep Costa^a and Marc Gascons^a

 ^aAMADE - Analysis and Advanced Materials for Structural Design, Polytechnic School, University of Girona, C/ Universitat de Girona 4, E-17003 Girona, Spain.
 ^bGRMT Materials Research Group and Thermodynamics, Polytechnic School, University of Girona, C/ Universitat de Girona 4, E-17003 Girona, Spain.

Universitat de Girona Grup de Recerca en Materials i Termodinàmica

Resin curing

Kinetic analysis

Prediction of the evolution of two epoxy resin cure

- **Overheating**
- Conclusions

Weak intermolecular forces between polymer chains No cross-links between chains Softens when heated thermoset Strong cross-link bond

Strong covalent bonds between polymer chains Remains hard when heated

Resin curing: formation of three-dimensional cross-linked thermoset structure

Resin curing

Stages:

- chain extension: primary amine reaction.
- **crosslinking**: secondary amine reaction

Resin curing

Cure time after mixing

5/30

Time-temperature-transformation diagram of a thermosetting system

Thermally activated process

Phenomenological models

• nth order reaction:

$$\frac{d\alpha}{dt} = k(T)(1-\alpha)^n$$

• Sestak-Berggren (autocatalytic behavior)

$$\frac{d\alpha}{dt} = k(T)\alpha^m (1-\alpha)^n$$

• Kamal model ($k_1(T)$ non-catalyzed and $k_2(T)$ catalyzed reaction).

$$\frac{d\alpha}{dt} = k_1(T)(1-\alpha)^n + k_2(T)\alpha^m(1-\alpha)^n$$

Phenomenological models (diffusion limitations)

$$\frac{d\alpha}{dt} = k(T) \left(\frac{\alpha}{\alpha_{max}(T)}\right)^m \left(1 - \frac{\alpha}{\alpha_{max}(T)}\right)^n$$

maximum fractional conversion at the specific temperature, α_{max} :

$$\alpha_{max}(T) = \frac{T_{g0}T_{g\infty}}{\left(T_{g0} - T_{g\infty}\right)T} - \frac{T_{g\infty}}{\left(T_{g0} - T_{g\infty}\right)}$$

A second approach assumes a serial combination of chemical reaction and diffusion

$$\frac{1}{k(T)} = \frac{1}{k_{diff}(T)} + \frac{1}{k_{chem}(T)}$$

- Model-fitting (phenomenological models)
- Model free methods

Isoconversional methods

$$\left[\frac{d\ln(d\alpha/dt)}{dT^{-1}}\right]_{\alpha} = -\frac{E_{\alpha}}{R} \quad (1)$$

 E_{α} is the apparent activation energy

Integration of (1) yields:

$$\frac{d\alpha}{dt} = Af(\alpha)e^{-E_{\alpha}/RT}$$

- Model-fitting (phenomenological models)
- Model free methods

Isoconversional methods

$$\left[\frac{d\ln(d\alpha/dt)}{dT^{-1}}\right]_{\alpha} = -\frac{E_{\alpha}}{R} \quad (1)$$

 E_{α} is the apparent activation energy

$$\frac{1}{k(T)} = \frac{1}{k_{diff}(T)} + \frac{1}{k_{chem}(T)}$$

$$E_{\alpha} = \frac{A_{chem} \exp\left(-\frac{E_{chem}}{RT}\right) E_{diff} + A_{diff} \exp\left(-\frac{E_{diff}}{RT}\right) E_{chem}}{A_{chem} \exp\left(-\frac{E_{chem}}{RT}\right) + A_{diff} \exp\left(-\frac{E_{diff}}{RT}\right)}$$
10/30

Monitoring methods:

- Rheological analysis (Rheometer, DMA)
- Thermal analysis (DSC)
- Spectroscopic analysis (FTIR, Raman, fluorescence)
- Ultrasonic analysis

Kinetic analysis

12/30

• Thermal analysis (DSC)

 $\frac{d\alpha}{dt} = \frac{1}{\Delta H} \frac{dH}{dt}$

Temperature dependence?

• Isothermal experiments

13/30

Universitat de Girona Grup de Recerca en Materials i Termodinàmica Kinetic analysis

For a given α linear relationship between $\frac{d\alpha}{dt}$ and $\frac{1}{T_{\alpha}}$

$$\ln\left(\frac{d\alpha}{dt}\right)_{\alpha} = -\frac{E_{\alpha}}{RT_{\alpha}} + \ln(Af(\alpha))$$

Friedman differential isoconversional method.

For each β_i , $d\alpha/dt|_{\alpha,i}$ and $T_{\alpha,i}$ are determined

Vyazovkin's advanced integral isoconversional method, minimum of function $\Omega(E_{\alpha})$:

$$\Omega(E_{\alpha}) = \sum_{i=1}^{n} \sum_{j=1, j \neq i}^{n} \frac{\beta_{j} \Delta p(x_{\alpha,i})}{\beta_{i} \Delta p(x_{\alpha,j})}$$

$$\Delta p(x_{\alpha}) \equiv p(x_{\alpha}) - p(x_{\alpha - \Delta \alpha}) = \int_{x_{\alpha}}^{x_{\alpha - \Delta \alpha}} \frac{e^{-u}}{u^2} du, u = \frac{E}{RT}$$

Once E_{α} and $Af(\alpha)$ have been determined, the evolution of the cure reaction can be obtained from

$$\frac{d\alpha}{dt} = Af(\alpha)e^{-E_{\alpha}/RT}$$

Prediction for an arbitrary temperature program, T(t).

Discretized at fixed time intervals Δt , $t_k = k \cdot \Delta t$: $T_k = T(t_k)$.

 α_j at a given temperature T_j

$$\alpha_{k+1} = \alpha_k + Af(\alpha)\Big|_k \cdot e^{-\frac{E_k}{RT_k}} \Delta t$$
, $t_0 = 0$ at $\alpha_0 = 0$

$$t_{j} \text{ to reach } \alpha_{j}$$

$$t_{j} = t_{k_{j}} + \left\{ \frac{1}{n_{exp}} \sum_{i=1}^{n_{exp}} \frac{E_{j}}{R\beta_{i}} \left[p\left(\frac{E_{j}}{RT_{j,i}}\right) - p\left(\frac{E_{j}}{RT_{j-1,i}}\right) \right] - \left[e^{-\frac{E_{j}}{RT_{k_{j-1}}}} \left(t_{k_{j-1}+1} - t_{j-1} \right) + \sum_{k=k_{j-1}+2}^{k_{j}} e^{-\frac{E_{j}}{RT_{k}}} \Delta t \right] \right\} e^{-\frac{E_{j}}{RT_{k}}}$$

DSC measurements

3 (K/min)	$\Delta m{H}$ (J/g)	
	VTC401	M18
1.25	687	688
2.5	684	683
5	662	667
10	641	695
20	647	677

Friedman kinetic analysis

18/30

Self consistency test

Prediction test

More than 5 hours, is it possible to reduce the time needed to fully cure the resin?

Manufacturer's recommended cure cycle

Universitat de Girona Grup de Recerca en Materials i Termodinàmica Prediction of the evolution of two epoxy resin Universitat De Girona

Predicted evolution:

Real cure cicle

24/30

Universitat de Girona Grup de Recerca en Materials i Termodinàmica Prediction of the evolution of two epoxy resin Universitat De Girona

Physical properties

25/30

Overheating

Overheating

28/30

Overheating

0.85

1150

1686

4.38 x 10⁻⁷

2.12 x 10⁵

8.97 x 10⁴

3.0 x 10⁹

2.4464

8.314

390.2

0.26

20

25

[29]*

[29]*

[13]

[29]*

[13]

[13]

[13]

[18]

[18]

[13]

10 °C overheating

Sample thickness, $t_{\rm crit}$ (mm)

29/30

- During the curing reaction there is a dramatic change of the physical properties of the material.
- The kinetics of the curing process is usually complex and involves more than one process. At the beginning is controlled by the chemical reaction but at the end diffusion is the kinetics limiting process.
- Isoconversional methods allow to fit the kinetics and predict the evolution.
- A total reduction in real time of up to 74 % has been achieved.
- It is possible to analytically determine the critical thickness for overheating.

Thermal decomposition of calcium propionate: films and powders

