Doctoral thesis

On the generation of design allowables taking into account the material variability, the presence of defects and the random spatial distribution of FRP

Oriol Vallmajó Martín Girona

Supervised by:

- Dr. Albert Turon Travesa (UdG)
- Dr. Albertino Arteiro (U. Porto)

Universitat de Girona

LIST OF CONTENTS

Introduction

Objective

Design allowables:

- Analytical
- FEM
- Presence of defects

Material uncertainty

Conclusions

Introduction

Composite materials are widely used thanks to their specific properties:

- High mechanical performance
- ✓ Low density

Introduction

Composite materials are widely used thanks to their specific properties:

- ✓ High mechanical performance
- ✓ Low density

However, the anisotropic behavior of composite structures make their design a complex process.

Material used in the aircraft Boeing 787

Introduction

Composite materials are widely used thanks to their specific properties:

- High mechanical performance
- ✓ Low density

However, the anisotropy behavior of composite structures make their design a complex process.

Moreover, the brittle nature of polymer composites means that failure initiates from a stress raiser.

Damage on an open hole specimen

D Uncertainties related to composite structures:

- Material

. . .

- Geometry
- Manufacturing deffects

Mean, CoV

Design of composite structures:

Pyramid of certification [Composite Material Handbook, CMH-17]

Design of composite structures:

Pyramid of certification [Composite Material Handbook, CMH-17]

Composite structures:

- ✓ Excellent specific mechanical properties
- High effect by uncertainties

"In practice, today's simulation are providing a single result.

In front of the authorities, we wish to provide an envelop of uncertainty associated to the results accounting for variations of specimens (material, manufacturing artefacts, assemblies build stress, loading....)"

(M. Fouinneteau, ECOMASS-Composites 2019, Eindhoven)

27/01/2023

Main objective

On the generation of **design allowables** taking into account the material variability, the presence of defects and the random spatial distribution of FRP

Objectives

On the generation of **design allowables** taking into account the material variability, the presence of defects and the random spatial distribution of FRP

D Objective 1: How to determine the design allowables of different stress raisers?

- Geometrical feature: Open Hole
- Damage: impact on a surface
- Presence of defects: fiber misalignment

Objectives

On the generation of design allowables taking into account the **material variability**, **the presence of defects** and the random spatial distribution of FRP

Objective 1: How to determine the design allowables of different stress raisers?

- Geoemtrical feature: Open Hole
- Damage: impact on a surface
- Presence of defects: fiber misalignment

□ Objective 2: How to determine the material variability with the presence of defects?

Design allowables

B-value as a design allowable

Design allowables. Analytically

The notched strength can be calculated analytically following:

Camanho et al. 2012

$$\begin{cases} \frac{1}{l} \int_{R}^{R+l} \sigma_{xx}(0, y) dy = X^{L} \\ \int_{R}^{R+l} \mathscr{G}_{I}(a) da = \int_{0}^{l} \mathscr{R}(\Delta a) d\Delta a \end{cases}$$

Design allowables. Analytically

□ Input parameters of the case study:

$\mathrm{IM7}/8552$	E_1 [Gpa]	X_T [Gpa]	\mathscr{R}_{ssT} [N/mm]
Mean value STDV	$171.42 \\ 2.38$	$2323.47 \\ 127.45$	$206.75 \\ 23.64$

Geometry	$W \; [mm]$	$2R \; [\mathrm{mm}]$
Nominal value	12	2
Range	± 0.2	± 0.2

27/01/2023

Design allowables. Analytically

Methodology:

Design allowables. Analytically

Results:

Design allowables. Analytically

Results:

Design allowables. Analytical

Limitations:

Balanced laminates

Inter-laminar damage is not considered

■ Failure mechanism?

Determination of the CAI after the LVI:

Design allowables. FEM

□ Input parameters of the case study:

Technical characteristics of the LVI and CAI laboratory test.

Material type	UD tape - CFRP			
Stacking sequence	[45/135/90/0/0] _s			
Specimen dimensions	225×150	mm		
Thickness of the laminate	1.84	mm		
LVI test window	125×125	mm		
Impact energy	25	J		
Impactor mass	3.2	kg		
Honeycomb type	HRH-10-6.0-0.96			
Thickness of the honeycomb	30	mm		

Symbol	Input parameter	
m _{imp}	Impactor mass	
μ	Friction coefficient	/ /
GIC	Mode I interlaminar fracture toughness	
GIIc	Mode II interlaminar fracture toughness	
BK_{η}	B-K exponent parameter for mixed mode propagation	
τ_{II}	Mode II interlaminar strength	
ρ	Density	
E11	Young Modulus in fibre direction	
E22	Young Modulus in matrix direction	
ν_{12}	Major Poisson ratio	
ν_{23}	Transverse Poisson ratio	
G ₁₂	Shear modulus	
X_T	Fibre tensile strength	
X_C	Fibre compression strength	
f_{XC}	Portion of X_T	
f_{XC}	Portion of X_C	
Y_T	Matrix tensile strength	
Y_C	Matrix compression strength	
S_L	Matrix shear strength	
S_{LP}	Matrix shear yield stress	
Kp	Shear plasticity parameter	
GXT	Tensile fibre fracture toughness	
Gxc	Compression fibre fracture toughness	
f_{GXT}	Portion of \mathcal{G}_{XT} dissipated by the first branch	
$f_{\mathcal{G}XC}$	Portion of \mathcal{G}_{XC} dissipated by the first branch	
E _{33H}	Longitudinal Young Modulus of the honeycomb	
v_{12H}	Transverse Poisson ratio of the honeycomb	
C_H	Coefficient of the honeycomb ¹	
G_{12H}	Shear modulus of the honeycomb	
G _{13µ}	Shear modulus of the honeycomb	
Gaar	Shear modulus of the honevcomb	
- 23 <u>H</u>		

■ Methodology:

27/01/2023

Results:

Results:

Approach

x

■ Input parameters of the case study:

Material: IM7-8552

Different diameters (D) are considered: 2, 4, 6, 8 and 10 mm

a Same diameter-width ratio: $\frac{D}{W} = \frac{1}{6}$

■ Misalignment is considered as:

- Uniform distribution: $\theta^{\circ} = uniform\{-3^{\circ}, 3^{\circ}\}$
- Normal distribution: $\theta^{\circ} = normal\{\mu = 0^{\circ}, s = 3^{\circ}\}$

Results:

Design allowables: presence of defects

D=4 Comparison of Distributions Material and geometric variability 7.0% --Nominal value 6.0% 5.0% Frequency 4.0% 3.0% 2.0% 1.0% 0.0%

Results: Material and geometric variability Ply misalignment 7.0% ---Nominal value 6.0% 5.0% Frequency 4.0% 3.0% 2.0% 1.0% 0.0%

Notched Strength (MPa)

D=4 Comparison of Distributions

1.0%

0.0%

Design allowables: presence of defects

Results: Material and geometric variability Ply misalignment 7.0% -Material and geometric variability & ply misalig ---Nominal value 6.0% 5.0% Frequency 4.0% 3.0% 2.0%

Notched Strength (MPa)

D=4 Comparison of Distributions

Objectives

On the generation of design allowables taking into account the material variability, the presence of defects and the random spatial distribution of FRP

Objective 1: How to determine the design allowables of different stress raisers?

Geometrical feature: Open Hole

Damage: impact on a surface

Presence of defects: fiber misalignment

□ Objective 2: How to determine the material variability with the presence of defects?

Objectives

On the generation of design allowables taking into account the material variability, the presence of defects and the random spatial distribution of FRP

Objective 1: How to determine the design allowables of different stress raisers?

- Geoemtrical feature: Open Hole
- Damage: impact on a surface
- Presence of defects: fiber misalignment

□ Objective 2: How to determine the material variability with the presence of defects?

Microstructural analysis are useful to determine the properties that feed meso-scale models (eg: OH) from the properties of the constituents and their distribution:

T Fibers

Matrix

n Fiber/matrix interface

The variability of the constituents, the presence of defects and their random spatial distribution are the main sources of uncertainty:

 $E_{11}(mean, STDV)$

 $v_{12}(mean)$

 $E_{22}(mean, STDV)$

 $G_{12}(mean, STDV)$

 $G_{23}(mean, STDV)$

 $v_{23}(mean)$

□ Input parameters of the case study:

Constituent	E_1 [N	/IPa]	E_{2}, E_{3}	[MPa]	ν_{12}	$, \nu_{13}$	ν	' 23	G_{12}, G_{13}	₃ [MPa]	G_{23}	[MPa]
	Mean	STDV	Mean	STDV	Mean	STDV	Mean	STDV	Mean	STDV	Mean	STDV
Carbon fiber AS4	225 000	$11 \ 250$	15 000	750	0.2	0.01	0.07	0.0035	15 000	750	7000	350
Epoxy matrix $3501/6$	$4\ 200$	210	-	-	0.34	0.017	-	-	1 567	78.35	-	-

Void type	Mean diameter [mm]	STDV diameter [mm]	$ k_{fiber-void} \\ [-] $
Small matrix voids	0.004	0.0004	0.1
Large matrix voids	0.014	0.001	0.1
Inter-fiber voids	0.014	0.001	-0.05

44

Objectives

On the generation of design allowables taking into account the material variability, the presence of defects and the random spatial distribution of FRP

Objective 1: How to determine the design allowables of different stress raisers?

- Geoemtrical feature: Open Hole
- Damage: impact on a surface
- Presence of defects: fiber misalignment

Dobjective 2: How to determine the material variability with the presence of defects?

Conclusions

On the generation of design allowables taking into account the material variability, the presence of defects and the random spatial distribution of FRP

A new methodology to calculate design allowables

- □ Analytically
- □ Numerical (FEM)

A new methodology to determine the uncertainty on the material properties

Thanks for your attention!

Oriol Vallmajó Martín PhD student oriol.vallmajo@udg.edu

U.PORTO Cincqu^{driving} innovation