

POLITECNICO MILANO 1863

DEPARTMENT OF MECHANICAL ENGINEERING

Sequential algorithms for the numerical analysis of delaminations: a new efficient and versatile approach

L. M. Martulli

lucamichele.martulli@polimi.it

LUCA M. MARTULLI

2010 - 2016

Bachelor/Master degree in Aerospace Engineering University of Pisa

2017 - 2020 PhD in Materials Engineering Toyota Motor Europe & KULeuven

2020 - Present

Assistant Professor O Mechanichal Engineering Department, Politecnico di Milano

POLITECNICO MILANO 1863

DEPARTMENT OF MECHANICAL ENGINEERING

Sequential algorithms for the numerical analysis of delaminations: a new efficient and versatile approach

L. M. Martulli

lucamichele.martulli@polimi.it

SIMULATIONS OF DELAMINATIONS UNDER FATIGUE

MODELLING DELAMINATION PROPAGATION UNDER FATIGUE

Virtual Crack Closure Technique

POLITECNICO MILANO 1863

THE BENCHMARK: THE DIRECT CYCLIC (DC) ALGORITHM

- Highly inefficient: from 2 to 15 more computationally expensive than cohesive zone models [1]
- Input limited to a single set of Paris parameters [1,2]

POLITECNICO MILANO 1863

- Pre-processing
- Launch simulation

- Pre-processing
- Launch simulation
- SERR extraction
- Calculation of number of cycles to release one node

Pre-processing

- Launch simulation
- SERR extraction
- Calculation of number of cycles to release one node

Fatigue load history is simulated via a series of static simulations

The algorithm uses the VCCT already implemented in Abaqus

SSF VALIDATION

Experimental data from Asp et al. (2001)

Applied moment \rightarrow Constant propagation speed

SSF PERFORMANCE

POLITECNICO MILANO 1863

SSF AND DC COMPARISON

Simulation	DC Time	SSF Time	Reduction factor
Finer mesh – mode I 0.5 mm propagation	39 h, 58 m, 54 s		
Coarse mesh – mode I 10 mm propagation			
Coarse mesh – mixed mode 10 mm propagation			
Coarse mesh – mode II 10 mm propagation			

SSF AND DC COMPARISON

Simulation	DC Time	SSF Time	Reduction factor
Finer mesh – mode I 0.5 mm propagation	39 h, 58 m, 54 s	2 m, 46 s	867
Coarse mesh – mode I 10 mm propagation	86 h, 42 m, 45 s	8 m, 29 s	613
Coarse mesh – mixed mode 10 mm propagation	76 h, 3 m, 15 s	9 m, 46 s	305
Coarse mesh – mode II 10 mm propagation	52 h, 43 m, 48 s	14 m, 56 s	212

Composite Structures 210 (2019) 932-941

A benchmark test for validating 3D simulation methods for delamination growth under quasi-static and fatigue loading

L. Carreras^{a,*}, J. Renart^a, A. Turon^a, J. Costa^a, B.L.V. Bak^b, E. Lin F. Martin de la Escalera^c, Y. Essa^c

^a AMADE, Polytechnic School, University of Girona, Universitat de Girona 4, E-17003 Girona, Spain ^b Dept. of Materials and Production, Aalborg University, Fibigerstraede 16, DK-9220 Aalborg East, Denmark ^c AERNNOVA Engineering Division SA, Llano Castellano Avenue 13, E-28034 Madrid, Spain

PROBLEMS

SIMULATIONS OF DELAMINATIONS UNDER STATIC LOADINGS

POLITECNICO MILANO 1863

The Abaqus model does not define the delamination front. It uses bonded (red) and de-bonded (blue) nodes.

The front is identified using the distance between bonded and debonded nodes.

If the distance is under a threshold proportional to the element size, the bonded node is considered a front node.

The front nodes are approximated with a polynomial function.

The original model is copied, partitioned along the front and remeshed.

EXPERIMENTAL VALIDATION CASE

ALGORITHM PARAMETERS

Polynomial smoothing of crack fronts

Displacement intervals between simulations

FIRST VALIDATION: NO PROPAGATION

FIRST VALIDATION: NO PROPAGATION

FIRST VALIDATION: NO PROPAGATION

SIMULATION WITHOUT PROPAGATION

SECOND VALIDATION: FULL SIMULATION

BOTH TECHNIQUES UNDERESTIMATE THE DELAMINATION RESISTANCE

THE NEW MESH CANNOT COPE WITH SERR CONCENTRATIONS

@ 10 mm propagation

POLITECNICO MILANO 1863

SIMULATION OF 12 MM DELAMINATION FRONT

SIMULATION OF 12 MM DELAMINATION FRONT

SIMULATION OF 12 MM DELAMINATION FRONT

The experimental crack should not be possible according to VCCT

THE EXPERIMENTAL CRACK SHOULD NOT BE POSSIBLE ACCORDING TO VCCT

Possible explanations:

• VCCT is a node-wise technique that does not include a fracture process zone

Carreras et al. (2019)

THE EXPERIMENTAL CRACK SHOULD NOT BE POSSIBLE ACCORDING TO VCCT

Possible explanations:

- VCCT is a node-wise technique that does not include a fracture process zone
- Fibre bridging increases local fracture toughness

CONCLUSIONS: WHY AM I HERE?

CONTACTS

Luca M. Martulli <u>lucamichele.martulli@polimi.it</u>

www.mecc.polimi.it

