A novel methodology to measure the transverse Poisson's ratio in the elastic and plastic regions for composite materials

I. R. Cózar, J.J. Arbeláez-Toro, P. Maimí, F. Otero, E. V. González, A. Turon, P. P. Camanho

AMADE

ANALYSIS AND ADVANCED MATERIALS

ivan.ruiz@udg.edu

Introduction

- > What is the transverse Poisson's ratio (v_{23}) ?
 - □ The transverse Poisson's ratio is the negative quotient of the out-of-plane transverse strain (ε_{33}) to the applied in-plane transverse strain (ε_{22}):

$$v_{23} = -\frac{\varepsilon_{33}}{\varepsilon_{22}}$$

- > Why is the elastic transverse Poisson's ratio (ν_{23}) crucial?
 - □ Fibre reinforcement polymers (FRP) behave as a homogenous transversely isotropic material. They have a plane of symmetry with respect to a rotation about the fibre–oriented axis.

□ Five elastic material properties are required in the generalised Hooke's law:

0

Introduction

- > Why is the elastic transverse Poisson's ratio (ν_{23}) crucial?
 - □ Fibre reinforcement polymers (FRP) behave as a homogenous transversely isotropic material. They have a plane of symmetry with respect to a rotation about the fibre-oriented axis.
 - □ Five elastic material properties are required in the generalised Hooke's law:
 - E_{11} : Longitudinal Young's modulus
 - E_{22} : Transverse Young's modulus
 - G_{12} : Longitudinal shear elastic modulus
 - v_{12} : Longitudinal Poisson's ratio

 $\begin{bmatrix} \frac{1}{E_{11}} & \frac{-\nu_{12}}{E_{11}} & \frac{-\nu_{12}}{E_{11}} & 0 & 0\\ \frac{-\nu_{12}}{E_{11}} & \frac{1}{E_{22}} & \frac{-\nu_{23}}{E_{22}} & 0 & 0\\ \frac{-\nu_{12}}{E_{11}} & \frac{-\nu_{23}}{E_{22}} & \frac{1}{E_{22}} & 0 & 0 \end{bmatrix}$ 0 0 σ $2(1+\nu_{23})$ 0 0 0 0 E_{22} $\frac{1}{G_{12}}$ 0 0 0 0 0 $\frac{1}{G_{12}}$ 0 0 0 0 0

42(11), 1004-1019.

Introduction

- > Why is the plastic transverse Poisson's ratio (v_{23}^p) crucial?
 - □ FRPs show nonlinear response under certain loading conditions, such as compressive or shear loading states in the directions governed by the matrix.

 \Box The evolution of the plastic strains is governed by the plastic transverse Poisson's ratio (ν_{23}^p).

> Main objectives:

□ Measure the elastic transverse Poisson's ratio.

□ Measure the plastic transverse Poisson's ratio.

□ Define a simple test set-up.

□ No increase the commonly test matrix used in the characterisation of FRPs.

- > How is the transverse Poisson's ratio measured in the literature?
 - □ Through-the-thickness test:

- σ_{22} σ_{23} σ_{12} σ_{12} σ_{11} σ_{13} σ_{13} σ_{13} σ_{13}
- Specimen length is limited to panel thickness. For example, Khaled *et al.* used a unidirectional laminate with 96 plies.
- Curing thick laminates can lead to significant residual stresses which can cause delamination and residual shape distortions.
- Specific grips are required to transfer the load from the hydraulic grip into the specimen.
- It is not the standard test in the commonly used test matrix, a specific panel must be then manufactured.

Khaled, B., Shyamsunder, L., Hoffarth, C., Rajan, S. D., Goldberg, R. K., Carney, K. S., ... & Blankenhorn, G. (2018). Experimental characterization of composites to support an orthotropic plasticity material model. Journal of Composite Materials, 52(14), 1847-1872.

- > How is the transverse Poisson's ratio measured in the literature?
 - □ Ultrasonic wave propagation and mechanical tests:
 - I. The elastic modules $(E_{11}, E_{22} \text{ and } G_{12})$ are obtained from uniaxial tests.
 - II. Several ultrasonic pulse transmission tests are performed at different directions and the components of the stiffness tensor are calculated as

$$C_{ijkl} = \rho \dot{u}_{i,l}^2$$

where C_{ijkl} are components of the stiffness tensor, ρ is the apparent mass density and $\dot{u}_{i,l}$ is the ultrasonic phase velocity.

III. Transverse Poisson's ratio is estimated from the stiffness tensor.

Kohlhauser, C., & Hellmich, C. (2012). Determination of Poisson's ratios in isotropic, transversely isotropic, and orthotropic materials by means of combined ultrasonic-mechanical testing of normal stiffnesses: application to metals and wood. European Journal of Mechanics-A/Solids, 33, 82-98.

- > How is Poisson's ratio measured in the literature?
 - □ Ultrasonic wave propagation and mechanical tests:
 - Six test are required:
 - Three ultrasonic wave propagation tests.
 - Three uniaxial tests.
 - Ultrasonic-mechanical tests leads to significant errors in the estimation of the longitudinal and transverse Poisson's ratios.
 - The plastic Poisson's ratios cannot be estimated.

Kohlhauser, C., & Hellmich, C. (2012). Determination of Poisson's ratios in isotropic, transversely isotropic, and orthotropic materials by means of combined ultrasonic-mechanical testing of normal stiffnesses: application to metals and wood. European Journal of Mechanics-A/Solids, 33, 82-98.

ivan.ruiz@udg.edu

Winter AMADE Day – 26th January 2024 (Girona)

Methodology – Material and methods

- > The analysed material to illustrate the proposed methodology is a carbon fibre-reinforced poly-etherether-ketone (PEEK) used in the TREAL project.
- > Two different tests are employed:
 - □ Transverse tensile test with a unidirectional laminate of 11 plies ($[90]_{11}$) to measure the elastic transverse Poisson's ratio in tension (ν_{23T}).

Methodology – Material and methods

- > The analysed material to illustrate the proposed methodology is a carbon fibre-reinforced poly-etherether-ketone (PEEK) used in the TREAL project.
- > Two different tests are employed:
 - □ Transverse tensile test with a unidirectional laminate of 11 plies ($[90]_{11}$) to measure the elastic transverse Poisson's ratio in tension (ν_{23T}).
 - □ Transverse compressive test with a unidirectional laminate of 22 plies ([90]₂₂) to measure the elastic transverse Poisson's ratio in compression (ν_{23C}) as well as in the plastic region (ν_{23C}^p).

Methodology – Elastic transverse Poisson's ratio in tension (v_{23T})

> Elastic transverse Poisson's ratio in tension is measured following the ASTM-D3039M standard and using DIC equipment with a uniditectional laminate of $[90]_{11}$.

Methodology – Elastic transverse Poisson's ratio in tension (v_{23T})

Elastic transverse Poisson's ratio in tension is measured following the ASTM-D3039M standard and using DIC equipment with a uniditectional laminate of [90]₁₁.

AMADE ANALYSIS AND ADVANCED MATERIALS FOR STRUCTURAL DESIGN

Methodology – Elastic transverse Poisson's ratio in tension (v_{23T})

Elastic transverse Poisson's ratio in tension is measured following the ASTM-D3039M standard and using DIC equipment with a uniditectional laminate of [90]₁₁.

Methodology – Elastic transverse Poisson's ratio in compression

Transverse Poisson's ratio in compression is measured following the ASTM-6641M standard and using DIC equipment with a uniditectional laminate of [90]₂₂.

Methodology – Elastic transverse Poisson's ratio in compression

Transverse Poisson's ratio in compression is measured following the ASTM-6641M standard and using DIC equipment with a uniditectional laminate of [90]₂₂.

(18)

Methodology – Transverse Poisson's ratio in compression

> Elastic transverse Poisson's ratio in compression (v_{23C})

Methodology – Transverse Poisson's ratio in compression

> Plastic transverse Poisson's ratio in compression (v_{23C}^p)

Winter AMADE Day – 26th January 2024 (Girona)

Results and Discussion

Results – Elastic transverse Poisson's ratio (v_{23})

AMADE ANALYSIS AND ADVANCED MATERIALS FOR STRUCTURAL DESIGN

Results – Plastic transverse Poisson's ratio in compression

ivan.ruiz@udg.edu

Winter AMADE Day – 26th January 2024 (Girona)

Concluding remarks

Concluding remarks

- > A new methodology to measure the elastic transverse Poisson's ratio was proposed.
- > A linear relationship between the elastic transverse Poisson's ratio and axial transverse strain was found.
- > A new methodology to measure the plastic transverse Poisson's ratio in compression was proposed.
- > No volumetric plastic strains were observed at small values of the compressive plastic strains.
- > The analysed material behaves as a frictional material under significant amount of compressive plastic strains.

AMADE HEADQUARTERS Campus Montilivi

AMADE'S TESTING LABORATORY Technology Park

http://amade.udg.edu testlab.amade@udg.edu

Composites Part B 272 (2024) 111098

Contents lists available at ScienceDirect

Composites Part B

journal homepage: www.elsevier.com/locate/composites

A novel methodology to measure the transverse Poisson's ratio in the elastic and plastic regions for composite materials

I.R. Cózar^{a,*}, J.J. Arbeláez-Toro^{a,b}, P. Maimí^a, F. Otero^{c,d}, E.V. González^a, A. Turon^a, P.P. Camanho^{e,f}

- ^a AMADE, Polytechnic School, University of Girona, Campus Montilivi s/n, 17071 Girona, Spain
- ^b Faculty of Engineering, Instituto Tencnológico Metropolitano, Medellín, Colombia
- ^c CIMNE, Universitat de Politècnica de Catalunya, 08034 Barcelona, Spain
- ^d Department of Nautical Science and Engineering, Universitat Politècnica de Catalunya, Pla de Palau 18, 08003 Barcelona, Spain
- ^e DEMec, Faculdade de Engenharia, Universidade do Porto, 4200-465 Porto, Portugal
- f INEGI, Instituto de Ciência e Inovação em Engenharia Mecânica e Industrial, 4200-465 Porto, Portugal

