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Need to reduce fuel consumption and environmental impact in the transport industry

Aerospace industry

Topology
Optimization

Automotive industry
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Problem formulation Design variables

x The original design variable is discontinuous

V Density p € 0, 1]
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Common functionals:

J(x,u) = /Dfu(x)dV g(x) = /DXdV— Vv
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Use of additive manufacturing

(3D CAD data printing)
Topology optimized design 3D printing process failed!

Not enough sensitivity of the machine
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Use of additive manufacturing

(3D CAD data printing)
3D printing process failed!

Material fell during deposition process
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Topology optimized design
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Bound formulation and three Overhang filtering through

. . +«—— Density —— L
fields representation y threshold projection
(Lazarov, B.S., F. Wang & O. Sigmund, 2016) (Gaynor and Guest, 2016)

Mechanical constraints

Isotropic Perimeter as penalty (intermediate shapes self

term +«— Level set——

(S. Amstutz, C. Dapogny & A. Ferrer, 2022) weight compliance)
(G. Allaire et. al., 2017) 06/22
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Current challenges: larger number of inequality & PDE constraints, layer-by-layer
computation of the gradient and complex shape derivatives.

Length scales constraints Overhang constraints
Bound formulation and three Densit Overhang filtering through
fields representation y threshold projection
Isotropic Perimeter as penalty I .Mechanlc.:al SURUEIES
term — Level set (intermediate shapes self

weight compliance)

Aim: propose a different method to decrease the shape complexity and control the
overhang. Advantages: simplicity (perimeter), efficiency (no extra constraints) and useful

for density and level set approaches.
07/22



Global isotropic and anisotropic perimeter CIMNE®
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The Perimeter is a functional that computes the length of QQ boundaries.

Relative perimeter
INTERNAL BOUNDARIES

Total perimeter
INTERNAL + EXTERNAL BOUNDARIES

Shape derivative (level set) 1. Domain filtering
Per(Q) = [ 1dT — ., pari -
(€2) ./agz } X Gradient methods (density) 2. Perimeter computation
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Global isotropic and anisotropic perimeter CIMNE®
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1. Domain filtering

Global isotropic relative perimeter: H'(D) projection with Neumann boundary conditions

(smoothing).

1 2
min —/(,0E — x)2dV+% (Vpe)?dV = mm J(pe)

pe€H! . D\ , pe€
Similar Finite gradient

2. Perimeter computation

1
P : - 1 _— L] f
o [ = px-av

(S. Amstutz, C. Dapogny & A. Ferrer, 2022) L ., Density example
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Relative perimeter convergence
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Global isotropic and anisotropic perimeter CIMNE®
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Other domain filterings:

1. Isotropic perimeter. 3. Non-linear anisotropic perimeter.
' \/ Pending to implement
Already seen P
2. Anisotropic perimeter. Implementation

2

-7 7 min - j(uy) HyPX)

€l — < *

%/1 n n \S.t /Dx-dV—V =0
R
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Application to topology optimization of CIMNEE®
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structures and compliant mechanisms

Now, we will solve two optimization problems in the macroscopic scale:

(mxin J(uy) +vP(x) Minimum compliance J(uy) = /D fu,dV

s.t /X-dV—V*:O
\ D

I\

Compliant mechanisms j(ux):/ ku,dV
oD

O

“ D::ign domain “ Optimal design
With u,, solution of a(x,u,v) = [(v)
Several possibilities for the constitutive law l _’| l‘_

Cantilever beam Gripper 12/22



Application to topology optimization of CIMNE®

INTERNATIONAL CENTRE
FOR NUMERICAL METHODS

structures and compliant mechanisms

Cantilever beam
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Application to topology optimization of

structures and compliant mechanisms

Level set Density
Relative Total Relative Tortal
Relative Total Relative Total

LA E4 84

Without

Global length
scale penalization

Overhang

perimeter

penalization
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Gripper compliant mechanism

v = 45°
a=0°

ISOTROPIC PERIMETER

v = 85°

a = 90°

ANISOTROPIC PERIMETER
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Consider the homogenized elasticity tensor satisfying:

_ - _ Representative
T €rr Volume Element \\\\ ‘
oy | =C- | €y 2 4
| Tay _ | Cay_ X
Optimization problem:
min  «o; I'c- lﬁh + kP \V
X

hhih
D
(E.A. de Souza Neto, S. Amstutz, S.M. ﬁﬁﬁﬁﬁﬁ/

Giusti, A.A. Novotny) 15/22
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Extension to material design
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Pure bulk Pure shear Orthotropic bulk Shear - bulk

Level set Density Level set Density Level set Density Level set Density

Without

penalization scale penalization perimeter
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Extension to local perimeter

New motivation: control the
length of boundaries and
overhang more locally.

O B EON

One Lagrange multiplier per
subdomain.

\

®

@ min /qudV—F’YP(X)
X D

min

s.t

s.t /X-dV—V*:O
D

!

/D fu, dV

/X-dV—V*zo
D

1
— [ OA1 = pe(x))xdV — P* <0
2¢ Jp

©,
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min / Ju, dV
D

s.t /X-dV—V*:()
D

Pi(x)—P*<0(\)

Py(x) = P* <0 (\)

PnsubD (X) — P < 0 (AnsubD>
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First example: global isotropic relative perimeter versus local isotropic perimeter.

( (
min Vi(x) = / X - dV min V(x) = / X - dV
X D < X D
1
s.t 1 st — [ OAN1—pe(x))xdV — P* <0
\ 26 \ 26 D

Initial guess
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Extension to local perimeter
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Second example: global anisotropic relative perimeter versus local anisotropic perimeter.

min Vix) = / X -dV
D
1

min Vix) = / X - dV
D

/N

st — [ OAN1—pe(x))xdV — P* <0

1
t = (1= p))xdV - P* <
3 26/D( p(x))x <0 \ 2 /.

\

Initial guess
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Conclusions
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Main idea: smooth the boundary &
penalize gray areas

e |sotropic smoothing controls the global length

¢ Anisotropic smoothing may generally penalize also
overhangregions

Avoiding bound formulation or extra
mechanical constraints

Method useful for density and level set

Ongoing:

e | ocal perimeter as constraints
* Implementing the sense of the 3D printing
e Topology optimization with composites
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Features

GitHub

/Swan

https://github.com/SwanlLab/Swan/

Material design

Swan can perform analyses of microstructures: when combining it with its topology
optimization capabilities, novel metamaterials can be designed in order to tackle
complex challenges and further push the boundaries of engineering.

Structural design

The modular design of Swan allows the combination of several functionals in order
to define complex optimization problems. Among the functionals that can be used
as constraints are compliance, volume, and perimeter. Swan also features density-
based optimizers like Projected Gradient, MMA and IPOPT, as well as level-set
methods such as SLERP, Projected SLERP and Hamilton-Jacobi.

Multi-scale

One of the key features that sets Swan apart from other topology optimization
toolboxes is the ability to design optimal materials at the micro scale, and reuse the
obtained results to perform analyses at the macro level.

Multiphysics, and much more

We are constantly looking ahead and recruiting new contributors in order to keep
expanding Swan's capabilities. Among the planned upcoming features are

multiphysics, 3D microstructural optimization, and many more.
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Optimization of the
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3D cantilever benchmark
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Global length and overhang control for level set and density
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