

Lab Services

Testing capabilities	4
Lab equipment	5
Accredited tests	6
Standard tests	7
State-of-the-art tests	9
Non-destructive inspection	12
Microstructural inspection	13
Thermomechanical lab	14

Simulation Services

Simulation services	16
Constitutive models	17
Material properties identification	20

Lab Services

Testing capabilities

The mechanical testing lab is equipped to perform a wide variety of tests of coupons and small components, under static or fatigue loads, in different environmental conditions.

Load range	50 N to 300 kN
Test temperature	-55 °C to 240 °C
Test humidity	10% to 95%
\mathcal{N} Test frequency	up to 20 Hz

Lab equipment

- Universal testing machines, hydraulic (3x) and electromechanical (4x)
- Temperature and humidity testing chambers, for testing under controlled temperature and humidity conditions
- Drop weight testing tower, for low velocity impact tests
- Conditioning chambers and furnaces, controlled temperature and humidity
- Digital Image Correlation (DIC), contactless strain and displacement measurement
- Measurement equipment:
 - Long-distance travelling microscope for crack length monitoring
 - Strain gauge monitoring
 - Axial, biaxial, shear and COD extensometers
 - etc.

enio

ACCIÓ

Vertical strains during cracking on a CFRP open hole laminate, measured by means of DIC

Accredited tests

AMADE is currently holding ISO 9001 certification for its quality management system and its mechanical testing lab is ISO 17025 and Nadcap accredited.

The standard ISO 17025 is the guidebook for the mechanical testing laboratory management.

ISO 17025 accredited tests

Composite materials

Tensile	Compression	In-plane shear ±45°	Interlaminar shear (ILSS)
Tensile strength Young's modulus Poisson's ratio	Compressive strength Young's modulus Poisson's ratio	Shear strength Shear modulus	l Shear strength
ASTM D3039M EN 2561 ASTM D638 ISO 527-1 (Plastics)	prEN 2850B ASTM D695 ASTM D6641M ISO604 ASTMD695 (Plastics)	ASTM D3518M AITM 1-0002 EN 6031	en 2563 ASTM D2344M ISO 14130
V-notched shear - losipescu	Bending	Low velocity impact	Compression after impact
Shear strength Shear modulus	Flexural strength Flexural modulus EN 2562 ISO 14125 ASTM C393	Absorbed energy Delaminated area Indentation depth	CAI strength
ASTM D5379M	ASTM D790 (Plastics)	ASTM D7136M	ASTM D7137M AITM 1-0010 EN 6038
Quasi-static indentation I Absorbed energy	Open hole tensile Strength Notch factor	Open hole compression Strength Notch factor	Flatwise tensile I Strength
ASTM D6264M	AITM 1-0007 EN 6035 ASTM D5676M	AITM1-0008 EN6036	AITM 1-0025

Composite materials

Compact Tension (CT) and Compression (CC) Translaminar fracture toughness Translaminar cohesive law

Internal procedure

Double Edge Notch Tensile and Compression Translaminar fracture toughness Notched strength Internal procedure

Translaminar fracture toughness

Fatigue tensile test

Fatigue strength S-N curves

ASTM D3479

ENF - Mode II fatigue Crack onset curve Crack growth rate curve Fatigue threshold DCB - Mode I fatigue Crack onset curve Crack growth rate curve Fatigue threshold ASTM D6115 | Internal procedure

MMB - Mixed mode fatigue Crack onset curve Crack growth rate curve Fatigue threshold Internal procedure

Fatigue

State-of-the-art tests

State-of-the-art tests

Tensile tests at high strain rates Dynamic strength and Young's modulus Interlaminar tests at high strain rates Dynamic interlaminar fracture toughness G_{IC}

On-going research

Draping characterization

Mechanical properties for the simulation of composites draping process

Other tests

We perform multitude of tailor-made tests for our customers. Let us know your needs ! Other standards & tests testlab.amade@udg.edu \$ +34 972 419 690

Non-destructive inspection

A, B and C-Scan,

for ultrasound inspection of internal material damage

0% 10 20 30 40 50 60 70 80 90 100

Impact damage (delaminations) in CFRP laminates

X-ray tomography,

3D X-ray images of the microstructure and internal damage

Microstructural inspection

Optical Fluorescence Microscopy, detailed failure mode identification

Cross section of a woven CFRP laminate

Scanning Electron Microscopy (SEM), detailed failure mode identification

Cross section of a delaminated UD CFRP laminate

SEM image of a fractured cross ply CFRP laminate L. Marín, PhD thesis, 2015

B.3 ⊢^{20µm}

Thermomechanical lab

Differential Scanning Calorimetry (DSC)

Glass transition temperature	AITM 3-000
Melting / Crystallization	AITM 3-002
Extent of cure	AITM 3-000
Thermal conductivity	ASTM E195
Specific heat capacity	ASTM E126

NTM 3-0002 | ASTM E1356 | ISO 11357-2 NTM 3-0027 | ASTM D3417, E793, E794 | ISO 11357-3 NTM 3-0002, 3-0008 | ISO 11357-5 NSTM E1952

ASTM D7028, E1640

Dynamic Mechanical Analysis (DMA)

Glass transition temperature	AITM 1-0003 EN6062
Dynamic mechanical props	
(in tension)	ASTM D5026-01
(three-point bending)	ASTM D5023-01
(dual cantilever beam)	ASTM D5418-01
Master curve (stiffness vs time)	Internal procedure

Thermogravimetric Analysis (TGA)

Degradation
Loss on dry
Compositional analysi
Degradation kinetics

ISO 11358 ASTM E1868 ASTM E1131 | ISO 11358 Internal procedure

Thermomechanical Analysis (TMA)

Glass transition temperature Linear thermal expansion ASTM E1545 | ISO 11359-2 ASTM E831, E228 | ISO 11359-2

Simulation Services

Simulation services

AMADE's research pursues the industry-oriented development of material constitutive models for the reliable simulation of composite materials, bonded joints and, in general, non-linear anisotropic materials. We offer the following services:

Expert advising on the simulation of composite materials

Guidelines for the use of advanced material models in industry

Robust and reliable constitutive models for the simulation of:

- Damage evolution in composite materials Intralaminar damage model
- Static and fatigue delamination | Adhesive joints damage Interlaminar damage model: cohesive zone model
- Impact events on composite materials and adhesive joints Intra and interlaminar damage models

Development of tailor-made material models

Customized training at companies facilities

Constitutive models

Cohesive zone models allow the modeling of damage at predefined interfaces. They accurately reproduce the fracture process zone and can account for both damage initiation and propagation. The main features of AMADE's cohesive zone model are:

Modelling of interlaminar damage: delamination and adhesive joints

- Static, fatigue and impact loads
- Consistent mixed-mode behavior
- Strategies to use with coarse meshes: reduced computational time
- Implemented and working on Abaqus Standard and Explicit User subroutines: UEL | UMAT | UINTER | VUMAT | VUINTER | VUINTERACTION
- Available to be implemented in other FE software
- Physically measurable material properties

ACCIÓ

Cohesive zone model

Prediction of free-edge delaminations on a CFRP laminate using cohesive elements

Simulation of a lap adhesive joint with cohesive elements

Simulation of stiffeners debonding on an impacted composite stiffened panel

Constitutive models

Thermodynamically consistent damage model for the simulation of progressive intralaminar damage mechanisms in composite materials. The main features of the model are:

Modelling of intralaminar matrix and fiber progressive damage

- Damage activation functions based on LaRC failure criteria
- Objectivity of the model is ensured using Bažant's Crack Band Model

Physically based degradation

The tensile degradation of the fiber is described by two softening branches: linear (fiber bridging) and exponential (fiber pull-out)

Large element size allowed

by virtue of automatic strength reduction whilst keeping the fracture energy

Intralaminar damage model

Unidirectional composite laminates

- Available for shell and 3D solid finite elements
- Implemented on Abaqus Standard and Explicit User subroutines: UMAT | VUMAT
- Implemented on LS-DYNA Material model "MAT_262: Laminated Fracture Daimler Camanho"
- Available to be implemented in other FE software

Woven composite laminates

- Available for shell finite elements
- Implemented on Abaqus Explicit User subroutine: VUMAT
- Available to be implemented in other FE software

Simulation of damage evolution in a Compression After Impact (CAI) test

Constitutive models

Impact events are a design limitation in most structural elements. Combining AMADE's inter and interlaminar damage models implemented in explicit finite element codes, impact events in composite materials can be reliably simulated.

Reliable simulation of impact-induced damage good correlation in both damage extension and load-displacement response

Modelling strategies for improved computational time

Implemented and working on Abaqus Explicit User subroutines: VUMAT | VUINTER | VUINTERACTION

Available to be implemented in other FE software

Simulation, intralaminar damage

Simulation of impact events

Load vs time during an impact event: experimental data and numerical prediction

9.00 6.75 4.50 2.25 L03-S01; A=4430 mm²

Simulation, delaminations

Experimental (C-Scan), delaminations

Material properties identification

Elastic models

The material models developed in AMADE rely on physically measurable material properties that can be obtained in our test lab, mostly by means of standardized tests.

Some guidelines on the required material properties and how to measure them are given >

Composite material elastic properties			
E ₁₁	Young's modulus, fiber direction	Tensile test, fiber direction	
E ₂₂ E ₃₃	Young's moduli, transverse direction	Tensile test, transverse direction	
G ₁₂ G ₁₃	In-plane shear moduli	In-plane shear ±45° Iosipescu tests	
G ₂₃	Transverse shear modulus	Resin shear modulus Iosipescu test	
V ₁₂ V ₁₃	In-plane Poisson's ratios	Tensile test	
V ₂₃	Transverse Poisson's ratio	Computed (transversal isotropy plane)	
Composite material strength properties			
X _T	Tensile strength, fiber direction	Tensile test, fiber direction	
X _C	Compressive strength, fiber direction	Compression test, fiber direction	
Y _T	Tensile strength, transverse direction	Tensile test, transverse direction	

- Y_C Compressive strength, transv. direction Compression test, transverse direction
- Shear strength

In-plane shear ±45° | Iosipescu tests

Material properties identification

Damage models

The material models developed in AMADE rely on physically measurable material properties that can be obtained in our test lab, mostly by means of standardized tests.

Some guidelines on the required material properties and how to measure them are given >

Cohesive model material properties

${\cal G}_{\sf lc}$	Fracture toughness, mode I	DCB test
${\cal G}_{\sf llc}$	Fracture toughness, mode II	ENF or C-ELS tests
${\cal G}_{ m c}$	Fracture toughnesses, mixed mode	MMB test
σ_n^{max}	Interlaminar strength, mode I	Tensile test / ILTS test
σ_t^{max}	Interlaminar strength, mode II	(bulk matrix / adhesive) Interlaminar shear (ILSS) test (bulk matrix / adhesive)
Intrala	minar model material properties	

${\cal G}_{ m XT}$	Fiber fracture toughness, tensile	Compact tension or Double edge notch tensile
${\cal G}_{ m XC}$	Fiber fracture toughness, compression	Compact compr. or Double edge notch compr.
${\cal G}_{ m YT}$	Matrix fracture toughness, tensile same as \mathcal{G}_{lc} from the cohesive model	DCB test
${\cal G}_{ m YC}$	Matrix fracture toughness, compression	Computed: $G_{YC} = G_{SL} / \cos(53)$
${\cal G}_{\rm SL}$	Matrix fracture toughness, shear same as \mathcal{G}_{llc} from the cohesive model	ENF or C-ELS tests
Streng	th properties (see previous page)	

