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Prestressed concrete: a revolutionary invention
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The Role of Prestressing in Fiber Reinforced
Polymer Composites
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The Role of Prestressing in Fiber Reinforced
Polymer Composites

- Making the fiber yarns to become straighter and tighter
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The Role of Prestressing in Fiber Reinforced
Polymer Composites (FRPC)

- Making the fiber yarns to become straighter and tighter

- Inducing residual stress “on demand”
 Making the matrix more resistant to cracks initiation and propagation
* Minimizing the generated residual stresses during fabrication processes
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The Role of Prestressing in Fiber Reinforced
Polymer Composites
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CAN'’s: Covalent Adaptable Network

Thermoplastic Thermoset

% Covalently adaptive
exchange networks
< Malleable when heated
< Prominent thermal and
mechanical properties

% Reprocessable ¢ Covalently crosshinked

% Recyclable * Reprocessable polymer chains
< Poor chemical % Recyclable < Prominent mechanical
resistance < Sell-healable properties

% Chemical resistance
< Non- processable
< Non- recyclable

< No chemical cross-links
< Flow when heated

VITRIMER

vitrimer composites: overview and future prospects. RSC advances, 12(50), 32569-32582. UudG
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Exploring vitrimers as novel matrix materials for structural composites

Spanish project (2022-25): In search of sustainable, bio-based, hybrid,
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Post-tensioning method 1o achieve prestressed
FRPC

a) b) c) e)

temperature '

controtr <—> n
{ B W
FRP oad /<—> <—> EPFRP

‘ laminate

Five post-tensioning steps to produce an elastically prestressed FRP (EPFRP) laminate:
a) curing a FRP laminate under standard condition,

b) pre-heating to the post-tensioning treatment temperature,

c) applying tensile loading and facilitating stress relaxation in the matrix,

d) cooling down to room temperature,

e) releasing the load. ——
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Selection of thermal conditions to ensure matrix

stress relaxation
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The shaded region denotes the working area delimited by the four process design

constraints.
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Selection of thermal conditions to ensure matrix
stress relaxation
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Ensure stress relaxation of the matrix
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Selection of thermal conditions to ensure matrix
stress relaxation
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The shaded region denotes the working area delimited by the four process design
constraints.
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Selection of thermal conditions to ensure matrix
stress relaxation
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Thermal degradation can lead to detrimental changes in the properties of post-
tensioned polymers. Therefore, the safe post-tensioning treatment requires avoiding

degradation
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Selection of thermal conditions to ensure matrix

stress relaxation
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Viscosity

From an industrial perspective, the duration of the treatment should be restrained to a
practical limit to assure that the benefits gained from the improved mechanical
properties of the material overcome the cost of the conditioning process
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Selection of thermal conditions to ensure matrix
stress relaxation: validation tests
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Tuned residual stress to avoid matrix cracking —
Validation experiments

3 Real fime edge images during post-treatment testing
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Tuned residual stress to avoid matrix cracking —
Validation experiments

3 Real time edge images during post-freatment testing

a) Image of the zone of the specimen edge acquired with each picture.

b) Image in full resolution.
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Tuned residual stress to avoid matrix cracking —

Validation experiments
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Tuned residual stress to avoid matrix cracking —
Validation experiments
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Discussion: Post-tensioning load application

Multiple stages local heating
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Conclusions

* Prestressing technique that relies on matrices that can relax stress, like vitrimers, which also
improve sustainability by allowing for recycling and repair.

« Post-tensioning method - separates the curing and post-tensioning processes,
facilitating laminate production under conventional processing conditions.

 The method has been applied to vitrimeric cross-ply laminate demonstrating a delay in matrix
cracking with post-tensioning conditioning.

« Potential of prestressing technique to improve the durability composites, especially for
applications where matrix cracking and environmental exposure are the main challenges.
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