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… …… … . Until the Top 5 parameters ranking converge
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Sensitivity analysis guided ExplorationSurrogate models guided Exploitation

X1
*
 X2

*
 X3

*
    ….. Xd

*
 

S
e
n
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n

Non-Sensitive Dimension
RMSE

𝑥𝑚+1 = arg max𝑥∗∈𝐶 (𝑚𝑖𝑛𝑖∈𝑚 𝑤𝑇|| 𝑥𝑖 − 𝑥∗||)

Surrogate Model

Estimate RMSE

Surrogate ModelSurrogate Model

y ` y ` y `

𝑥𝑚+1 = argmax𝑥∗∈𝐶 σ𝑖=1
𝑚 eloocv exp (− ||𝑥𝑖 − 𝑥∗||),  

s.t mini∈𝑚  
||𝑥𝑖 − 𝑥

∗
|| ≥ 𝑆𝑡ℎ

…  …  …  … ...

Check Convergence
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Exploitation with wise ExplorationPure Exploration
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