Efficient uncertainty propagation of a composite single-lap joint and of a stiffened panel

Paolo Minigher January 31, 2025

Supervisors: Albertino Arteiro, Albert Turon, Pedro P. Camanho

- Motivation
- Parameter sensitivity in non-linear mechanics
- Application: composite-aluminum single-lap joint
- Application: single stringer compression specimen
- Conclusions and prospects

Motivation

Motivation

"The strength value used in a design must be such that if the 'worst of all situations' is combined in service, the resulting structure will still meet the load requirements without failure "

Kassapoglou C., Design and Analysis of Composite Structures (2013)

- Variability of loads and usage.
- Material scatter

- Environmental effects.
- Effects of damage.

$$\mathbf{K}(h) = \mathbf{K}(h^{0}) + \frac{\partial \mathbf{K}}{\partial h_{i}} \Delta h_{i} + \frac{1}{2} \frac{\partial^{2} \mathbf{K}}{\partial h_{i} \partial h_{j}} \Delta h_{i} \Delta h_{j} + \cdots$$
$$\mathbf{f}^{\text{ext}}(h) = \mathbf{f}^{\text{ext}}(h^{0}) + \frac{\partial \mathbf{f}^{\text{ext}}}{\partial h_{i}} \Delta h_{i} + \frac{1}{2} \frac{\partial^{2} \mathbf{f}^{\text{ext}}}{\partial h_{i} \partial h_{j}} \Delta h_{i} \Delta h_{j} + \cdots$$
$$\mathbf{u}(h) = \mathbf{u}(h^{0}) + \frac{\partial \mathbf{u}}{\partial h_{i}} \Delta h_{i} + \frac{1}{2} \frac{\partial^{2} \mathbf{u}}{\partial h_{i} \partial h_{j}} \Delta h_{i} \Delta h_{j} + \cdots$$

Finite Differences (FD) $\frac{du}{dh} \approx \frac{u(h+\Delta h)-u(h)}{\Delta h}$ • Expensive, accuracy problems.

$$\begin{split} & \text{Adjoint Var. Method (AVM)} \\ & \mathcal{K}(h)\lambda(h) = \left(\frac{\partial\mathcal{G}}{\partial u}\right)^\top \\ & \frac{d\mathcal{G}}{dh} = \frac{\partial\mathcal{G}}{\partial h} + \lambda^\top \frac{\partial}{\partial h} \left[f_{\text{ext}}(h) - \mathcal{K}(h)u\right] \\ & \text{• Scales with the number} \\ & \text{of functionals } \mathcal{G}. \end{split}$$

Direct Diff. Method (DDM)

$$K \frac{du}{dh} = \frac{\partial f_{ext}}{\partial h} - \frac{\partial K}{\partial h} u$$
• Scales with the number
of design variables h.

Figure: Linearization of a generic system through two different approaches.

Paolo Minigher • January 31, 2025 • [M. Kleiber, 1997]

- An implicit solution scheme is required.
- Valid for both statics and dynamics.

- Added computational cost (semi-analytical):
 - · 1 linear system
 - · 2 evaluations of fint

• Applications to composite damage mechanics.

Figure: Sensitivities along simulation time.

Figure: Simulation time vs. sensitivity time.

Application: composite-aluminum single-lap joint

Composite-aluminum single-lap joint

Application: single stringer compression specimen

Single stringer compression specimen (1)

4.20103

Continuum solid shells

Figure: Cross-section.

0	
Total length	300 mm
Free length	240 mm
Width	150 mm
Skin layup	[45/90/-45/0]s
Stiffener layup	[-45/0/45/0] _s
Ply thickness	0.125 mm
Stiffener height	30 mm
Stiffener width	73 mm

Single stringer compression specimen (2)

Figure: Variability of load-displacement curve.

Paolo Minigher • January 31, 2025 • [A.C. Orifici et al., 2008]

Conclusions and prospects

Conclusions and prospects

- Focus on parameter sensitivity for non-linear mechanics using a direct differentiation approach.
- Application of first-order sensitivity information to approximate the variability of the mechanical response of composite structures:
 - · large displacements.
 - · intra-laminar damage.
 - inter-laminar damage.
 - contact

Prospects

- Global/local study with damage in local model.
- Iterative solution between global and local models.

Thank you for the attention